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Abstract: Image super-resolution aims to reconstruct a high-resolution image from its low-resolution
counterparts. Conventional image super-resolution approaches share the same spatial convolution
kernel for the whole image in the upscaling modules, which neglect the specificity of content in-
formation in different positions of the image. In view of this, this paper proposes a regularized
pattern method to represent spatially variant structural features in an image and further exploits a
dynamic convolution kernel generation method to match the regularized pattern and improve image
reconstruction performance. To be more specific, first, the proposed approach extracts features from
low-resolution images using a self-organizing feature mapping network to construct regularized
patterns (RP), which describe different contents at different locations. Second, the meta-learning
mechanism based on the regularized pattern predicts the weights of the convolution kernels that
match the regularized pattern for each different location; therefore, it generates different upscal-
ing functions for images with different content. Extensive experiments are conducted using the
benchmark datasets Set5, Set14, B100, Urban100, and Manga109 to demonstrate that the proposed
approach outperforms the state-of-the-art super-resolution approaches in terms of both PSNR and
SSIM performance.

Keywords: image super-resolution; dynamic convolution kernel; regularized pattern; multi-task
learning; RPB-RDN

1. Introduction

The goal of single image super-resolution (SISR) is to reconstruct high-quality high-
resolution (HR) images from degraded low-resolution (LR) images. It has very wide applica-
tions in video surveillance, remote sensing, and medical and military imaging. Another
interesting work related to SISR is the face hallucination which enlarges input regions by
approximately linear mapping SVD values among different resolutions [1]. Its hallucination
capability was further expanded with the same mapping across different views [2]. The
pioneering networked SISR work was done by Dong et al. [3]. Their proposed neural
network SRCNN established an end-to-end mapping from an input interpolated LR image
to the output HR image. Then VDSR [4], DRCN [5], DRRN [6], and MemNet [7] were
successively proposed, which further improved the image reconstruction performance.
These methods up-sampled an LR input at the very first to the required size of a network
output, rather than using an upscaling module to increase the spatial resolution at the end.

However, recent research works found that such an early interpolation on LR image
will inevitably result in detail loss and greatly increase the amount of model calculation.
Extracting features from the original LR input and increasing the spatial resolution at the
end of the network has become a popular deep SISR structure. Shi et al. proposed an
efficient sub-pixel convolution layer in ESPCN [8], which enlarged the LR feature map to
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the output size at the end of a network. With the efficient sub-pixel convolution layer, many
methods, such as EDSR [9], RDN [10], RFANet [11], SAN [12], DID [13], treated SR recovery
with different scale factors as independent tasks, and applied sub-pixel convolution layers
for feature map expansion at the end. While sub-pixel convolutional layers are only feasible
to integer scale factors, and a specific network model must be designed for each scale factor,
each network model can magnify images merely with a fixed integer scale factor.

To avoid the design of different network models for different scale factors, the meta-
learning technique [14] has been introduced to develop various SR approaches. The
feed-forward model (FFM) in the meta feature representation [14] provided a feedforward
mapping method that directly predicted the required parameters of a test instance. Sim-
ilar to the Hypernetworks [15], the weight of another neural network was generated in
a feedforward process. To perform image super-resolution at any scale in one model,
Hu et al. proposed Meta-SR [16] to use the Meta-Upscale Module to improve the spatial
resolution at the end of the network. For different scale factors and position coordinate
offsets, the weight prediction network in the Meta-Upscale Module can generate different
convolution kernels to generate the final SR image. However, the Meta-Upscale Module
still shared the convolution kernel spatially and did not consider the content information
of the current image. Chen et al. proposed LIIF [17], using a multi-layer perceptron at the
end of the network to replace the traditional upscaling layer and predict the gray value of
each pixel in the output SR image. However, since the input of the multi-layer perceptron
is a one-dimensional vector, the original position information of the feature vector will
be lost in the process of converting a multi-dimensional vector of the feature map into a
one-dimensional vector of an input.

The major challenge of single image SR is how to perform upscaling reconstruction
adaptively to the spatially variant image content. According to the characteristics of involu-
tion [18], if the convolution kernel is shared spatially, the parameters of the convolution
kernel cannot be flexibly adjusted to match different inputs. On the contrary, we can use
space-specific kernels for more flexible modeling in the spatial dimension. Similar to the
space-specific involution, introducing a regularized pattern to guide the generation of
convolution kernel will be helpful in the upscaling module. Motivated by this, in this paper,
we propose a specific regularized pattern extraction network to extract the regularized
pattern from LR features and then generate a space-specific convolution kernel according
to different regularized patterns.

The two contributions of this paper are summarized as follows.
(1) A regularized pattern extraction method is proposed to extract the regularized

pattern from LR features. This will adaptively guide the image reconstruction in a spatially
variant manner. Furthermore, both position information and scale information are used
in the weight prediction network with the proposed regularized pattern. As a result, the
convolution weight prediction network can accurately match the relationship between
input parameters and output convolution kernel parameters.

(2) A dynamic convolution kernel generation method is proposed to generate the most
matching convolution kernel parameters according to the regularized pattern and position
and scale information of the current position. Consequently, the pixels at different positions
in the SR image can be processed differently, which enhances the texture consistency with
the HR image and improves the network performance.

The rest of this paper is organized as follows. The dynamic convolution kernel
generation method is proposed and then further exploited to develop a super-resolution
approach in Section 2. The proposed approach is evaluated with state-of-the-art approaches
in extensive experiments in Section 3. Finally, Section 4 concludes this paper.

2. Proposed Dynamic Convolution Kernel Generation Based on Regularized Pattern
for Image Super-Resolution

Different pixel points in the LR image have different image contents. As shown in
Figure 1, the blue points are in the flat color block area, and the red points are in the
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edge area. During the Meta-SR upsampling process [16], the convolution kernels used
for these two positions are the same. The difference in the content information of these
two positions is not considered. We propose a dynamic convolution kernel generation
method to adaptively generate convolution kernels according to local image content, which
is represented by using the proposed regularized pattern. For the blue and red points
in Figure 1, the proposed method produces different convolution kernels matching their
regularized content patterns, implementing space-specific reconstruction operations.

Figure 1. A conceptual illustration of our proposed SR method. Pixels at different positions are upsam-
pled using different convolution kernels that match the regularized pattern of the current position.

Assuming that an input LR image is ILR, the LR feature FLR is extracted from ILR by
the LR feature extraction network. We use the feature tensor V ∈ RH×W×inC to represent
the FLR, where H is the height of ILR, W is the width of ILR, and inC is the number of
channels of V. In the feature tensor V, the feature vector Vi′ ,j′ ∈ RinC corresponds to the
feature representation on the pixel point (i′, j′) of the LR image.

2.1. Proposed Regularized Pattern Extraction Method

The regularized pattern extraction method is proposed in this section to guide the
image upscaling reconstruction. Different pixel positions on the input LR image ILR contain
different image content, such as relatively smooth background regions, or edges of an object
that changes drastically. Their differences are manifested in their features FLR. We define
the regularized pattern P as

P = p
(

FLR
)
= S

(
σ
(

FLR ⊗W1 + B1

)
⊗W2 + B2

)
(1)

where p() is the regularized pattern extraction function, ⊗ is the convolution operator,
W1 and B1 are the weight and bias of the first convolution layer on regularized pattern
extraction network, W2 and B2 are the weight and bias of the second convolution layer
on regularized pattern extraction network, σ() is the Relu activation function, S() is the
Sigmod activation function.

The regularized pattern defined in (1) is an abstraction of the LR feature FLR, features
that can distinguish content information of different positions are merged to obtain the
regularized patterns. During the model training, the weight of the convolution kernel in
the regularized pattern extraction network defined in (1) is constantly updated under the
constraint of the L1 loss function, focusing on features that can best distinguish the content
information to seek the regularized pattern vector with the least structural risk.

2.2. Proposed Dynamic Convolution Kernel Generation Method

In this section, a dynamic convolution kernel generation method is proposed to adap-
tively generate convolution kernels according to local image content, which is represented
using the proposed regularized pattern described in Section 2.1.

First, task-level samples and data samples need to be generated. Suppose that the
scale factor range is [rmin, rmax] when performing SR reconstruction on LR images, and the
probability of using each scale factor in the range for super-resolution reconstruction is



Sensors 2022, 22, 4231 4 of 14

equal, that is, the distribution p(r) of the scale factor r is a discrete uniform distribution in
[rmin, rmax] as

p(r) = U(rmin, rmax) (2)

We use the values of all scale factors in the distribution (2) to downsample the training
set HR images to obtain the training set LR images corresponding to different scale factors
r. Each time a scale factor rs is randomly selected from the distribution p(r) as the current
task, and then a pair of LR-HR image patches are randomly selected from the training set
corresponding to the scale factor rs as training samples.

Suppose that the length and width of the LR image patch are L, there are L2 pixels on
the LR image patch, and there are (bL× rsc)2 pixels on the corresponding reconstructed
SR image patch. The weight prediction network needs to generate a convolution kernel
for each pixel in the SR image matching its RP, position, and scale information. Then the
generated convolution kernels are used to map the LR image to the HR image. So, the
number of data samples in the current task with factor rs is (bL× rsc)2.

Second, given a scale factor rs, the input LR image ILR with the height L and the width
W, the LR feature obtained after passing ILR through the feature extraction network is
FLR. Then, FLR is highly abstracted to extract the regularized pattern P, which represents
the structure of different position information to distinguish image content at different
locations as

P = pα

(
FLR

)
(3)

where pα is the regularized pattern extraction function and α is the parameter of the
regularized pattern extraction network.

Third, for a pixel point (i, j) in the SR image, the mapping pixel position in the LR
image is i′, j′, and the position and scale information is Mi,j which can be obtained as
follows. Suppose that for the pixel (i, j) in ISR, its mapping (i′, j′) can always be found in
FLR, where the Vi′ ,j′ is most closely related to the RGB value of the pixel (i, j) in ISR. The
mapping formula from ISR to FLR is as [16]

i′, j′ = m(i, j) = (

⌊
i
r

⌋
,
⌊

j
r

⌋
) (4)

where m() is the position mapping function, r is the scale factor, and b c is the floor function.
Then, for the feature vector Vi′ ,j′ in the LR feature FLR, the corresponding multiple pixel
points (i, j) in ISR have a different relative positional relationship with Vi′ ,j′ . Define the
relative offset function to express this difference [16]

o(i) = (
i
r
−

⌊
i
r

⌋
) (5)

where o() is the relative offset function. Then, the position and scale information Mi,j at the
pixel point (i, j) of the SR image ISR can be obtained as [16]

Mi,j =

(
o(i), o(j),

1
r

)
=

((
i
r
−

⌊
i
r

⌋)
,
(

j
r
−

⌊
j
r

⌋)
,

1
r

)
(6)

Fourth, the corresponding regularized pattern is the vector Pi′ ,j′ in position i′, j′ of P.
For different pixels, the regularized pattern, location, and scale information are different.
That means the relative deviation from its mapped location and the structural information
of the location are unique. We generate the best-matched convolution weights for each
pixel as

Wi,j = Fθ

(
Pi′ ,j′ , Mi,j

)
(7)

where Fθ is the convolution weight prediction function, θ is the parameter of the convolution
weight prediction network, and Wi,j is the convolution weight corresponding to the pixel
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(i, j) in the SR image. The convolution weight prediction network generates a total of
(L× r×W × r) convolutions to form the convolution weight set Wset as

Wset = Fθ(P, M) (8)

Fifth, for the gray value of the pixel point (i, j) in the SR image, the LR feature FLR
i′ ,j′ at

the mapping position i′, j′ in the LR image is the most closely related. Performing matrix
product of the convolution weight Wi,j and the LR feature FLR

i′ ,j′ we obtain the gray value Vi,j

of the pixel point as
Vi,j = FLR

i′ ,j′Wi,j (9)

For the entire SR image, it is obtained by upsampling the LR features as

ISR = fWset

(
FLR

)
= fFθ(pα(FLR),M)

(
FLR

)
(10)

where fWset is the upsampling function, and Wset is the convolution kernel weight set.

Sixth, for the generated SR image patch, the L1 loss function is used to measure the error
between the SR image patch and the HR image patch

Ls = ∑
∣∣∣ISR − IHR

∣∣∣ = ∑ | fFθ(pα(FLR),M)

(
FLR

)
− IHR| (11)

where Ls is the error between ISR and IHR in current task with the scale factor rs. In each
task, the regularized pattern extraction network parameters α and convolution weight
prediction network parameters θ are updated using gradient descent:

α′ = α− β∇αLs = α− β∇α ∑ | fFθ(pα(FLR),M)

(
FLR

)
− IHR| (12)

θ′ = θ − β∇θ Ls = θ − β∇θ ∑ | fFθ(pα(FLR),M)

(
FLR

)
− IHR| (13)

where α and θ are the parameters before the update, α′ and θ′ are the parameters after the
update, and β is the learning rate.
By continuously extracting different scale factors from the distribution as different tasks
to train the model, the parameters α and θ are continuously updated. The purpose of
meta-learning training is to obtain appropriate parameters α and θ, so that the sum of task
losses of all the scale factors sampled in the distribution p(r) is the smallest.
Finally, we use the trained network for the inference. Suppose that the scale factor of the
current task is r, the length of the input LR image corresponding to the current task is L,
and the width is W, so the length of the SR image is bL× rc, and the width is bW × rc.
For each pixel in the SR image, the convolution weight prediction network generates a
convolution kernel matching its regularized pattern according to Equation (7). Then the
generated convolution kernel is used to map the LR features of the corresponding positions
to RGB values according to Equation (9), and finally, the SR image is formed. Figure 2 is an
example of SR images generated with scale factors of 1.6, 2.2, 2.8, 3.4, and 4.0, respectively.

Figure 2. SR images generated by the proposed method at multiple scales.
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2.3. Justification of the Proposed Dynamic Convolution Kernel Generation Method

To demonstrate the various convolution kernels generated according to different image
content, an experiment is conducted as follows.

Assuming that the scale factor r is 2, for the pixel X(i′, j′) in the low-resolution image
ILR, we can generate four convolution kernels W2i′ ,2j′ , W2i′+1,2j′ , W2i′ ,2j′+1, W2i′+1,2j′+1. We
define these convolution kernels as a convolution kernel group Gi′ ,j′ on this same pixel
location, which corresponds to G1

i′ ,j′ , G2
i′ ,j′ , G3

i′ ,j′ , G4
i′ ,j′ , and the variation of the convolution

kernel group Gi′ ,j′ at pixel point X(i′, j′) in ILR is defined as

Ci′ ,j′ = ∑p,q∈{−1,0,1}∑x∈{1,2,3,4} D
(

Gx
i′ ,j′ , Gx

i′+p,j′+q

)
(14)

where the Ci′ ,j′ is the variation of the convolution kernel group Gi′ ,j′ at the pixel point
X(i′, j′) in ILR, and D() is the function of calculating the variation between the two convo-
lution kernel groups and defined as

D
(

Gx
i′ ,j′ , Gx

i′+p,j′+q

)
= ∑m∈Gx

i′ ,j′ ,n∈Gx
i′+p,j′+q

abs(m− n) (15)

where abs() is an absolute value function, and m, n are different values at corresponding
positions in two different convolution kernels.

In our experiment, we use the test image 253,027 from the B100 dataset [19], the img59
image from the Urban100 dataset [20], and the YumeiroCooking image from the Manga109
dataset [21] as the test images. Then, we apply Equation (10) on these images to obtain
the variation value of the convolution kernel group at each position, and then normalize
the values to be a range of [0, 255]. These values are visualized as color images using
COLORMAP_JET in OpenCV.

As seen from Figure 3, we can find that in the grassland, sky, and large-area color
blocks, where the content changes slowly and the regularization pattern is relatively simple,
the change variation of the convolution kernel group is very small. The convolution kernel
group of these pixel points is very similar to the convolution kernel groups of their neighbor
pixels. On the contrary, the zebra patterns, clothing patterns, and architectural textures
change drastically. The regularized pattern yields rich information, the convolution kernel
group changes much. The regularized pattern guides the generation of the convolution
kernel, which prompts the convolution weight prediction network to generate the optimal
convolution kernel.

2.4. Proposed Image Super-Resolution Approach

An overview of the proposed network structure is shown in Figure 4. It contains
three parts: (i) feature extraction network, (ii) regularized pattern extraction network,
and (iii) convolution weight prediction network. We name our network as Regularized
Pattern Based-RDN (RPB-RDN) since we chose RDN [10] as the first-part feature extraction
network, which has been used also in Meta-RDN [16] and LIIF-RDN [17]. The second part
regularized pattern extraction network and the third part convolution weight prediction
network are presented as follows, respectively.

The regularized pattern extraction network consists of two convolutional layers, a
ReLU activation function layer, and a Sigmoid activation function layer. Both the numbers
of input and output channels of the Conv1 layer are inC, and the Relu activation function
layer is used to perform nonlinear mapping on the LR feature FLR. The number of input
channels of the Conv2 layer is inC, and the number of output channels is outC, so that the
final regularized pattern has a suitable number of channels. Finally, the Sigmoid activation
function layer maps the regularized pattern to [0, 1] so that it has the same value range as
the position and scale information.
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Figure 3. Visualization of dynamic convolution weights that are generated by our proposed approach.
The first column presents the original test images, and the second column presents the visualized
convolution weight variation values calculated using Equation (10). (a) 253027 from B100 dataset [19].
(b) img59 from Urban100 dataset [20]. (c) YumeiroCooking from Manga109 dataset [21].

Figure 4. An overview of the network structure of the proposed SR approach.
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The convolution weight prediction network consists of two full connection layers
and a ReLU activation function layer. We concatenate the regularized pattern vector of
the current position and the position and scale information to get the vector Vin as the
input of the first full connection layer. In our network, the dimensions of the regularized
pattern vector Pi′ ,j′ and the position and scale information vector Mi,j are both 3, so the
dimension of the vector Vin is 6. Considering that the output vector dimension of the
entire convolution weight prediction network is outC × inC × k× k, we set the number
of output units of the first full connection layer to 256 for the diversity of the output of
the entire convolution weight prediction network while ensuring speed. Therefore, the
number of input units of the second full connection layer is 256, and the output of that is a
vector Vout whose dimension is outC× inC× k× k. Then we transform Vout into a group of
convolution kernels. The number of convolution kernels is the same number of SR image
gray channels outC, and the parameter number of each convolution kernel is inC× k× k.
This convolution weight prediction network is expressed as

Vout = W2(σ(W1Vin + b1)) + b2 (16)

where Wi is the weight of the ith fully-connected layer, bi is the bias of the ith fully connected
layer and σ() is the Relu activation function.

3. Experimental Results

To evaluate the performance of the proposed RPB-RDN network and its various
proposed components, including the proposed regularized pattern extraction network and
the convolution weight prediction method, extensive experimental results are provided in
this section, including the comparison between RPB-RDN and other SOTA methods.

3.1. Experimental Setup

In this paper, the high-resolution image set DIV2K is used. There are a total of
1000 images in DIV2K, 800 images for training, 100 images for verification, and 100 images
for testing. All experimental models are trained with a DIV2K training image set. For
testing, five standard benchmark data sets are used, including Set5 [22], Set14 [23], B100 [19],
Urban100 [20], and Manga109 [21]. The PSNR and SSIM performance metrics are used to
evaluate the results of image super-resolution reconstruction. All performance metrics are
calculated on the Y channel of the YCbCr color space of the image. Given two images, the
detailed formulas of PSNR and SSIM [24] are provided as

PSNR = 10× log10(
MaxV
MSE

) (17)

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (18)

where MaxV is the maximum intensity value that image pixels can take, MSE is the mean
square error between the two images, µx is the average intensity value of the image x, µy is
the average intensity value of the image y, σ2

x is the variance of image x, σ2
y is the variance

of image y, σxy is the covariance of image x and image y, c1 and c2 are constants used to
maintain stability [24].

3.2. Implementation Details

We use the L1 loss function to train the network. During the network training process,
8 low-resolution image patches with a size of 50× 50 are randomly selected as a batch input.
We increase the number of patches by flipping horizontally or vertically and randomly
rotating 90◦. The optimizer is Adam, and the learning rate is initialized to 0.0001, which is
reduced by every 400 epochs. All experiments are run in parallel on 2 GPUs. The training
scale factor varies from 1 to 4, the step size is 0.1, and the distribution of the scale factors
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is uniform. Each image patch in a batch has the same scale factor. The dimension of the
regularized pattern vector Pi′ ,j′ is set to 3, which can speed up the matching efficiency and
improve the reconstruction effect.

3.3. Performance Evaluation on the Proposed Regularized Pattern Extraction Method

To study the impact of the regularized pattern extraction method, an experiment
is conducted to compare two network structures as follows. The first one (denoted as
‘baseline model’) is a single-layer convolutional network, which only performs a limited
linear transformation on LR features. The second one is our proposed network. Since
the proposed model uses the Sigmoid activation function at the end of the network, the
regularized pattern is the same as the value range of the position and scale information,
which can help to identify the relationship between input and output and speeds up the
network convergence. Table 1 shows that the proposed model achieves better results in
X2, X3, and X4 SR tasks in the three data sets of B100, Urban100, and Manga109, with an
average increase of 0.04 dB in PSNR and 0.0005 in SSIM compared with the baseline model.

Table 1. PSNR (dB) and SSIM performance on proposed regularized pattern extraction network. The
best performance is highlighted in the bold format.

Methods Metric
B100 [19] Urban100 [20] Manga109 [21]

X2 X3 X4 X2 X3 X4 X2 X3 X4

Baseline
model

PSNR
SSIM

32.34
0.9011

29.27
0.8089

27.75
0.7417

33.00
0.9359

28.90
0.8668

26.68
0.8042

39.31
0.9781

34.41
0.9491

31.36
0.9173

RPB-RDN
(Ours)

PSNR
SSIM

32.36
0.9014

29.30
0.8095

27.76
0.7421

33.04
0.9363

28.95
0.8677

26.73
0.8054

39.35
0.9782

34.46
0.9494

31.39
0.9177

3.4. Performance Evaluation on the Proposed Convolution Weight Prediction Method

To verify the effectiveness of the convolution weight prediction method based on
regularized pattern, an experiment is conducted using the benchmark dataset B100 [19]
with scale factors ranging from 1.1 to 4.0 and a step length of 0.1 using Meta-RDN [16],
and our RPB-RDN model respectively. As shown in Table 2, the proposed model, which
integrates the convolution weight prediction method based on the regularized pattern,
achieves better results than Meta-RDN [16] in all tasks with different scale factors. In a total
of thirty tasks, RPB-RDN improves PSNR by 0.06 dB on average over Meta-RDN [16].

Table 2. PSNR (dB) performance evaluation on the proposed convolution weight prediction method
using the B100 dataset [19]. The best performance is highlighted in the bold format.

Methods X1.1 X1.2 X1.3 X1.4 X1.5 X1.6 X1.7 X1.8 X1.9 X2.0
Bicubic 36.56 35.01 33.84 32.93 32.14 31.49 30.90 30.38 29.97 29.55

Meta-RDN [16] 42.82 40.04 38.28 36.95 35.86 34.90 34.13 33.45 32.86 32.35
Ours 43.03 40.11 38.34 36.96 35.86 34.91 34.14 33.46 32.86 32.36

Methods X2.1 X2.2 X2.3 X2.4 X2.5 X2.6 X2.7 X2.8 X2.9 X3.0
Bicubic 29.18 28.87 28.57 28.31 28.13 27.89 27.66 27.51 27.31 27.19

Meta-RDN [16] 31.82 31.41 31.06 30.62 30.45 30.13 29.82 29.67 29.40 29.30

Ours 31.88 31.45 31.07 30.75 30.48 30.17 29.95 29.72 29.49 29.30
Methods X3.1 X3.2 X3.3 X3.4 X3.5 X3.6 X3.7 X3.8 X3.9 X4.0
Bicubic 26.98 26.89 26.59 26.60 26.42 26.35 26.15 26.07 26.01 25.96

Meta-RDN [16] 28.87 28.79 28.68 28.54 28.32 28.27 28.04 27.92 27.82 27.75

Ours 29.09 28.90 28.73 28.57 28.42 28.27 28.15 28.01 27.88 27.76

3.5. Performance Evaluation on the Inference Time

In this experiment, we compare the running time of RDN [10], Meta-RDN [16], LIIF-
RDN [17], and our RPB-RDN using Xeon4210 and NVIDIA 2080Ti. We choose the B100 [19]
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as the test dataset and take the image pre-processing time out of consideration. The ex-
perimental results are shown in Table 3. The meta-upsampling module in RPB-RDN is
more time-consuming than the sub-pixel convolutional layer in RDN [10], so the overall
time-consumption of RPB-RDN is longer than RDN [10]. Compared with Meta-RDN [16],
RPB-RDN adds a regularized pattern extraction network so that the overall time con-
sumption has increased, but the difference is not large. LIIF-RDN [17] uses a multi-layer
perceptron that is more time-consuming than convolutional layers, so the overall time-
consuming of LIIF-RDN [17] is longer than RPB-RDN.

Table 3. The running time in B100 of various SR approaches (ms). The best performance is highlighted
in the bold format.

Methods X2 X3 X4

RDN 12.8 12.9 13.0

Meta-RDN [16] 14.4 14.8 16.4

LIIF-RDN [17] 21.3 22.7 24.9

RPB-RDN (Ours) 15.1 15.3 16.5

3.6. The Superior of the Proposed Method in Texture Reconstruction

We propose a texture dataset Texture, which crops the central part of images from five
benchmark datasets Set5 [22], Set14 [23], B100 [19], Urban100 [20], and Manga109 [21]. The
size of the cropped image is 1/16 of the original image. The foreground part in the center
of the image generally has richer textures than the background part, and it is more difficult
to restore. Comparing the SR results of the texture dataset Texture can further explore the
texture image restoration ability of various methods.

We use Meta-RDN [16], LIIF-RDN [17], and RPB-RDN to perform the X2, X3, and
X4 super-resolution reconstruction tasks on the proposed texture dataset Texture. The
experimental results are shown in Table 4. RPB-RDN achieves better results than Meta-
RDN [16] and LIIF-RDN [17] on all scales, which proves the superiority of the proposed
content-adaptive convolution kernel generation methods for texture restoration. On the
PSNR metric, RPB-RDN has an average improvement of 0.13 dB and 0.14 dB over Meta-
RDN [16] and LIIF-RDN [17]. On the SSIM metrics, RPB-RDN has an average improvement
of 0.0007 and 0.0008 over Meta-RDN [16] and LIIF-RDN [17].

Table 4. The PSNR (dB) and SSIM performance in texture dataset Texture. The best performance is
highlighted in the bold format.

Methods Metric X2 X3 X4

Meta-RDN [16]

PSNR(dB)/SSIM

34.22/0.9312 30.30/0.8601 28.08/0.7976

LIIF-RDN [17] 34.19/0.9309 30.31/0.8601 28.09/0.7975

RPB-RDN (Ours) 34.38/0.9318 30.45/0.8611 28.17/0.7981

3.7. Performance Comparison with Other SOTA Methods

We use the proposed network model to perform X2, X3, and X4 super-resolution
reconstruction on benchmark datasets Set5 [22], Set14 [23], B100 [19], Urban100 [20], and
Manga109 [21] respectively, and compare the results with RDN [10], Meta-RDN [16],
and LIIF-RDN [17]. As seen from Table 5, we can see that our method achieves better
results than these state-of-the-art methods in most of the reconstruction tasks. On all
fifteen tasks, our method outperforms RDN [10], Meta-RDN [16], and LIIF-RDN [17] by
an average of 0.10 dB, 0.11 dB, and 0.11 dB in PSNR, and 0.0007, 0.0003, and 0.0005 in
SSIM, respectively. Especially in the high-resolution benchmark datasets Urban100 [20]
and Manga109 [21], where the images have more richer details, our proposed model can
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achieve an improvement of 0.22 dB, 0.21 dB, and 0.21 dB in PSNR, and 0.0016, 0.0007, and
0.0010 in SSIM than RDN [10], Meta-RDN [16], and LIIF-RDN [17], respectively.

Table 5. The PSNR (dB) and SSIM performance comparison of various SR approaches. The best
performance is highlighted in the bold format.

The PSNR (dB) Performance
Dataset Scale Factor Bicubic RDN [10] Meta-RDN [16] LIIF-RDN [17] Ours

Set5 [22]
X2
X3
X4

33.66
30.39
28.42

38.24
34.71
32.47

38.22
34.63
32.38

38.17
34.68
32.50

38.23
34.74
32.50

Set14 [23]
X2
X3
X4

30.24
27.55
26.00

34.01
30.57
28.81

34.04
30.55
28.84

33.97
30.53
28.80

34.05
30.56
28.86

B100 [19]
X2
X3
X4

29.56
27.21
25.96

32.34
29.26
27.72

32.35
29.30
27.75

32.32
29.26
27.74

32.36
29.30
27.76

Urban100 [20]
X2
X3
X4

26.88
24.46
23.14

32.89
28.80
26.61

32.92
28.82
26.55

32.87
28.82
26.68

33.04
28.95
26.73

Manga109 [21]
X2
X3
X4

30.80
26.95
24.89

39.18
34.13
31.00

39.18
34.14
31.03

39.01
34.13
31.18

39.35
34.46
31.39

The SSIM Performance
Dataset Scale factor Bicubic RDN [10] Meta-RDN [16] LIIF-RDN [17] Ours

Set5 [22]
X2
X3
X4

0.9299
0.8682
0.8104

0.9614
0.9296
0.8990

0.9611
0.9298
0.8989

0.9610
0.9293
0.8986

0.9611
0.9298
0.8990

Set14 [23]
X2
X3
X4

0.8688
0.7742
0.7027

0.9212
0.8468
0.7871

0.9213
0.8466
0.7872

0.9208
0.8470
0.7876

0.9214
0.8470
0.7881

B100 [19]
X2
X3
X4

0.8431
0.7385
0.6675

0.9017
0.8093
0.7419

0.9019
0.8096
0.7423

0.9010
0.8096
0.7422

0.9014
0.8095
0.7421

Urban100 [20]
X2
X3
X4

0.8403
0.7349
0.6577

0.9353
0.8653
0.8028

0.9361
0.8674
0.8054

0.9350
0.8662
0.8040

0.9363
0.8677
0.8054

Manga109 [21]
X2
X3
X4

0.9339
0.8556
0.7866

0.9780
0.9484
0.9151

0.9782
0.9483
0.9154

0.9780
0.9487
0.9170

0.9782
0.9494
0.9177

3.8. Qualitative Results

Finally, we compare the SR images generated by our RPB-RDN with those generated
by Bicubic, RDN [10], Meta-RDN [16], and LIIF-RDN [17]. As seen in Figure 5, it can be
found that our method can recover textures that are recovered wrongly by other methods,
especially in zebra patterns, patterns on clothes, and lines of buildings. Owing to our
regularized pattern-based convolution kernel generation method, pixels in the different
regularized patterns will generate different convolution kernels to match the regularized
pattern so that the generated SR image and HR image have stronger texture consistency.
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Figure 5. Qualitative performance comparison of various SR approaches.

4. Conclusions

In this paper, we propose a dynamic kernel generation method based on the regular-
ized pattern for super-resolution image reconstruction. It can generate convolution kernels
for different pixels that match their regularized pattern so that the generated SR images
have stronger texture consistency with HR images. Experiments show that our proposed
method achieves better performance than other state-of-the-art approaches.
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